Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules.

نویسندگان

  • Robert Czajkowski
  • Sylwia Jafra
چکیده

Many Gram-positive and Gram-negative bacteria communicate using small diffusible signal molecules called autoinducers. This process, known as quorum sensing (QS), links cell density to the expression of genes as diverse as those associated with virulence factors production of plant and animal pathogens, bioluminescence, antibiotic production, sporulation or biofilm formation. In Gram-negative bacteria, this communication is mainly mediated by N-acyl-homoserine lactones (AHLs). It has been proven that inactivation of the signal molecules attenuates many of the processes controlled by QS. Enzymatic degradation of the signal molecules has been amply described. Two main classes of AHL-inactivating enzymes were identified: AHL lactonases which hydrolyse the lactone ring in AHLs, and AHL acylases (syn. AHL amidases) which liberate a free homoserine lactone and a fatty acid. Recently, AHL oxidoreductase, a novel type of AHL inactivating enzyme, was described. The activity of these enzymes results in silencing the QS-regulated processes, as degradation products cannot act as signal molecules. The ability to inactivate AHL (quorum quenching, QQ) might be useful in controlling virulence of many pathogenic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1.

The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent qu...

متن کامل

The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta.

We report for the first time the production of acyl homoserine lactones (AHLs) by Erwina amylovora, an important quarantine bacterial pathogen that causes fire blight in plants. E. amylovora produces one N-acyl homoserine lactone [a N-(3-oxo-hexanoyl)-homoserine lactone or a N-(3-hydroxy-hexanoyl)-homoserine lactone] quorum sensing signal molecule both in vitro and in planta (pear plant). Given...

متن کامل

Labrenzia sp. BM1: A Quorum Quenching Bacterium That Degrades N-acyl Homoserine Lactones via Lactonase Activity

We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. ...

متن کامل

Bacterial Quorum Sensing and Its Application in Biotechnology

Many bacteria use small diffusible signalling molecules called Autoinducers to communicate each other termed as Quorum Sensing. The signalling molecules in grampositive bacteria are oligopeptides, in gramnegative bacteria are Nacyl homoserine lactone and a family of auto inducers known as auto inducer2 in both grampositive and gramnegative bacteria. These molecules are internalized in the cell ...

متن کامل

Genomic Analysis Reveals Versatile Organisms for Quorum Quenching Enzymes: Acyl-Homoserine Lactone-Acylase and -Lactonase

Microbial virulence and their resistance to multiple drugs have obliged researchers to look for novel drug targets. Virulence of pathogenic microbes is regulated by signal molecules such as acylated homoserine lactone (AHL) produced during a cell density dependent phenomenon of quorum sensing (QS). In contrast, certain microbes produce AHL-lactonases and -acylases to degrade QS signals, also te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2009